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Abstract-Diffusion from a continuous line source is calculated by modifying a method originally pro- 
posed on the basis of Lagrangian similarity considerations to describe the mean position of an ensemble 
of particle releases. Good agreement is found with measurements of the characteristic size and maximum 
concentration throughout the intermediatestage of diffusion in a developing turbulent boundary layer. 

41, 

a27 

b, 

B, 

B,, 

AR 

c, 

C max, 

f (th 
PI 
Ql 

4 29 

u, 
v*, 
X, 
F 

B. 

constant in (15) ; 
constant in (17); 
Batchelor’s constant defined in (3); 
constant in (26); 
constant in (27); 
shift of the logarithmic profile in (30) ; 
concentration ; 
maximum concentration near the 
boundary ; 
defined in (11) ; 
defined in (32) ; 
discharge of the source per unit 
width ; 
flux in the z-direction ; 
mean longitudinal velocity ; 
shear velocity ; 
distance from the source ; 
mean longitudinal position of an 
ensemble of single particle releases; 
distance normal to boundary; 
characteristic length defined in (16); 
mean vertical position of an ensemble 
of single particle releases ; 
mean vertical position of particles 
from a continuous source at a cross 
section defined in (11) ; 
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momentum boundary-layer thick- 
ness ; 
characteristic size of the diffusing 
boundary layer, c(A) = C,,,jZ ; 
eddy di~usivity ; 
dimensionless parameter, 5 = z/A. 

1. INTRODUCTION 
PREDICTION of diffusion in turbulent shear flows 
is usually based on approximate semi-empirical 
analogies, similarities, and phenomenological 
laws. The earliest theory of turbulent diffusion 
of Taylor [l] assumed, in analogy to molecular 
diffusion, that the flux of the diffusing matter 
qs is proportional to an eddy diffusivity E and 
the local concentration gradient 

When employing such a model it is hoped that 
E is a local function of the velocity field so that 
its value at a point can be specified regardless 
of the position of the source or the size of the 
diffusion cloud. Many investigators have 
assumed, for example, that the eddy diffusivity 
for shear flows is equal to the eddy viscosity, 
defined by F. = -u’o’/(&@z). Later studies have 
shown, however, that this is not always the case 
([2], Chapter 5). The study of diffusion in homo- 
geneous turbulence has indicated, for example, 
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that E, as defined by (l), is independent of the 
position of the source only if the distance to the 
source is large compared to the Lagrangian 
integral scale of the turbulent motion. Estimates 
of the Lagrangian integral scale in boundary 
layers [3] suggest that it is larger than ten 
boundary-layer thicknesses. Thus, it is not 
fully justified to employ such a model in predict- 
ing diffusion behind a source in a boundary layer, 
Indeed, evaluation of E from experimental 
data [4] shows that it is not only a function of 
the distance normal to the boundary but 
depends as well on the size of the diffusion 
plume relative to the boundary-layer thickness, 
or equivalently, the distance from the source. 

In 1957, Batchelor [5] introduced Lagrangian 
similarity considerations to predict the turbulent 
motion of particles in self-preserving shear flow. 
The Lagrangian similarity hypothesis was ap- 
plied to that region of the boundary layer 
where the mean-velocity u(z) can be expressed as 
a function of the shear velocity, I/* and a 
measure of the turbulent scale, zO, in the form 

11 = v*g(z/z,). (2) 

In this region the hypothesis can be summarized 
(Cermak [6]) as follows: “For a marked 
particle which is at z = h when t = 0, the 
statistical properties of particle motion at time 
t depend only upon V* and t - t,. where t is 
of the order of h/V* or larger. and t, is a virtual 
time origin”. 

As a consequence of this hypothesis two 
equations describing the change of the mean 
vertical position, Z, and the mean longitudinal 
position, X, for an ensemble of single-particle 
releases may be written [S] : 

dz/dt = bV*. (3) 

where b is a universal constant. termed 
Batchelor’s constant, and 

dx/dt = V*g(Z/z,,) = u(F). (4) 

By eliminating the time variable dt between (3) 
and (4) the following equation describing the 
trajectory of the mean position is obtained : 

dF/dx = bV*/u(Z). (5) 

Equation (5) can be integrated when g(z!z,) is 
known. For the case of a logarithmic velocity 
profile 

u/V* = log (z/z&k (6) 

one obtains 

and 

dx/dZ = log (z/z,)/bk (7) 

bk%zo = (Z/z,) log (Z/zO) - Z/z, + constant. (8) 

The constant of integration in (8) is determined 
by the method of introduction of the tracer into 
the flow. 

In 1963, Cermak [6] applied the Lagrangian 
similarity hypothesis to estimate the variation 
of the ground level concentration downstream 
from continuous point and line sources. Such 
an estimate is obtained by relating the concen- 
tration due to a continuous source to the 
probability density function of single release 
particles at the same point. If it is assumed that 
the probability density function for single- 
particle releases, which is expected to be a 
universal function of (x - X)/Z and (z - Z)/Z, 
has a sharp maximum at x = X it is found that 
the ground level concentration C,,, at a 
distance x downstream from a continuous line 
source is 

or 

G,, cc Q/[V*%@/z,,,]> (9) 

C,,, CC Q/b431 (10) 

where Q is the discharge of the source (per unit 
width). 

Most of the experimental data reported in 
the literature describe the variation of C,,, in 
the form C,,, a xm where x is the distance 
downstream from the source. Equations (8) and 
(9), and the corresponding equations for point 
sources, enable one to calculate m when b and 
the constant of integration are known. Cermak 
has found reasonably good agreement between 
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the theoretical prediction of m and data from 
a large number of wind tunnel and field experi- 
ments of mass and heat diffusion, using b = 0.1. 
The value of b, however, depends to a large 
extent on the estimate of the constant in (8). 
Pasquill [7] suggested that b is approximately 
0.4, in agreement with a suggestion by Ellison 
[S] that b = k, where k is von Karman’s 
constant in (6). 
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The mean position ~(2) cannot be measured 
easily. Measurements have usually been made 
of the concentration distribution at different 
stations downstream from continuous sources 
and thus the mean position of the particles Z 
[defined in equation (1411 at each station x can 
be easily calculated. The purpose of this work is 
to analyze the data on diffusion from a line 
source at ground level presented by Poreh and 
Cermak [4] (referred to hereinafter as the data), 
and to examine whether simple equations like 
(5) can also be employed to calculate Z, and 
thus to predict the rate of diffusion, in developing 
boundary layers. 
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2. THE DIFFUSION PATTERN IN TURBULENT 
BOUNDARY LAYERS 
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The experimental data on diffusion from a 
line source at the wall in a neutrally buoyant, 
turbulent boundary layer indicate four stages 
of diffusion [4] : 

c/cm 
FIG. 1. Dimensionless concentration profiles in the inter- 

mediate zone [4]. 

(1) The initial stage close to the source. 
(2) The intermediate stage, which extends 

Z&40 boundary-layer thicknesses downstream, 
in which the concentration profiles are found to 
be approximately similar (see Fig. 1) in the sense 
that 

and the measurements of the maximum con- 
centration were approximated by 

where 

c/G,, = f(5) (11) 

c,,, u = 262Qx -0.9 (13) 

where U is the ambient velocity. [Note that (12) 
and (13) are empiricai equations with dimen- 
sional constants.] 

5 = z/L and f(1) = 0.5. 

The variation of 1 with the distance x from the 
source in this stage was found experimentally 
to be described by 

A = @076. x0.8 (x and Ii in cm) (12) 

(3) A transition stage with somewhat slower 
growth of the diffusion boundary layer. 

(4) A final stage in which the diffusion is 
limited by the growth of the developing boundary 
layer and the size of the plume is proportional 
to the thickness of the boundary layer. 

The present discussion will be Iimited to the 
intermediate zone. 
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In view of the similarity, the mean position of 
particles at any cross section Z, which is defined’ 

by 

Z = 7 czdz,[ cdz (14) 
0 

is given by 

z = a,J. (15) 

where 

~1 = 7 5f(T)d&(T)dS r 0.76. 
b 

(16) 
0 

The velocity measurements in the boundary 
layer presented in [3] were found to be des- 
cribed by the power law 

u/u = (z/S)l’n; n = 7. (17) 

Substituting (11) and (17) into the continuity 
equation 

[ UC dz = Q, 

the following equation results : 

The value of the definite integral in (18) 
is estimated from Fig. 1 to be around 1.05. 
Since2 = 0.761 and u(Z) = U . (zj~3)~‘“, it follows 
that 

c max = Q/taz 2 @)I~ 09) 

where az is approximately 1.45. Comparing 
equations (10) and (19) one finds that 

z u(Z) cc z U(Z). (20) 

which is satisfied, or course, if 

z = z. (21) 

As indicated earlier, Ellison suggested that 
the coefficient b equals k. His estimate is based 
on the use of the eddy diffusivity model (1). 
From this model one may obtain the following 
approximate relationship : 

dz -= - 
dt (22) 

0 0 

Integration of (22) by parts gives 

c dz. (23) 
0 0 

If u is described by (6) ~l’v’ is assumed a constant 
and E is assumed to be equal to the eddy viscosity, 
then a&j& is a constant and (23) reduces to 

dZ/dt = kV*. 

where k is the von K&man’s constant. 

(24) 

Equation (23) describes the mean upward 
velocity of the particles at a given section and 
we have therefore denoted it by dZ/dt rather 
than by d2jdt. Thus, Ellison’s suggestion that 
b in (3) equals k implies that the mean vertical 
change of Z equals that of Z, which is consistent 
with (21). Equation (21) is also supported by 
Pasquill[6], who compared a few field observa- 
tions of Z with values of Z calculated from (8) 
with b = k and found them to be virtually 
identical. 

3. CALCULATION OF THE DIFFUSION RATE IN 
THE INTERMEDIATE ZONE 

In view of the previous discussion it is 
suggested that the diffusion rate behind a 
continuous line source can be calculated with 
reasonable accuracy by an equation, similar 
to (5) 

d.Zjdx = bV*ju(Z). (25) 

and that the maximum concentration can then 
be calculated by (19). Several limitations should, 
however, be recognized when applying (25) 
to boundary layers : 

6) 

(ii) 

(iii) 

The logarithmic profile does not extend 
beyond z/S = 0.15. 
The boundary layer thickness increases 
in the downstream direction. 
All turbulent quantities, such as u v /V* * 
and ~/V*2, begin to decrease beyond 
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z/6 = o-1 5. It is therefore reasonabk to 

expect that b in (25) wouid also decrease 
as Z/C? becomes large. 

These limitations, which indicate that the 
flaw field does not possess a self-preserving 
character, raise doubts whether one could, 
a priori, expect to find a similarity of the con- 
centration profifes. The ex~erime~t~l data sug- 
gests, however, that the dimensionless distribu- 
yion of the dazing matter is not affe’ected to a 
large extent by the mild changes in the velocity 
field. On the basis of this observation one is 
justified to assume that the inhomo~e~eity of 
the field could be accounted for, with sufficient 
accuracy3 by using at each station, the local 
values of the parameters which appear in (25). 

Landweber [9] has calculated the develop- 
ment of a turbulent boundary layer and the 
shear distribution along a flat plate with zero 
pressure gradient. this cakulations are based 
on the distinction of three regions. A viscous 
sublayer near the wall, which does not affect 
the di~usio~ except very close to the source 
and may be totally neglected at high Reynolds 
numbers; a logarithmic region, zl/*/v > 30 and 
z,G c 015 in which 

A LINE SQL’RCE 

and an outer zone where 

1477 

(U - l&v* = F(zjG). (28) 

It was pointed out iater (see Discussion in [9]) 
that 

F(z/G) -I K(1 - z/S)2, K z 9.8. (29) 

Landweber’s calculations are in very good 
agreement with &he experimental data. Assuming 
that the velocity field is not affected by the 
di~using matter, we shah use his solution to 
cakulate V and 6 downs~~m from the 
source. Equations (2+-o-(9) will then be used 
to determine ~(2). 

As indicated earlier, it is expected that the 
coefficient b in (25) should decrease when 
Z/S becomes large. The same conclusion follows 
from (23) when the measurements of E across the 
boundary layer are used to estimate dZ/dt. 
~easurenlents of E by Lin [IO], shown in Fig. 2, 
can be approximated by 

with k = 0384. The limit of (30) for small z is 
kV*z in agreement with the conventional 
assumption far this region which was used by 
Ellison. 

Substituting E from (30) in (23) gives 

dzidt = kV*p(l#) (31) 
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where 

p(W) = 7 (1 + 452/S) 
0 

x exp [ - k(<lj6 + 2~2~2/S2)/O~09] 

x f(5) dUi f(5) d5. (32) 

The dependence of p on 1jS given by (32) has 
been calculated numerically and is shown in 
Fig. 2. Because of the limitations of (l), (32) 
cannot be considered to be a reliable quantita- 
tive estimate of the value of b in (25). Indeed, 
when used in the integration of (25) the diffusion 
rate did not match the experimental data. It 
does, however, support the intuitive argument 
that b is not a constant and should decrease 
when the diffusion plume emerges from the 
logarithmic layer. As a rough estimate of b it is 
proposed that use be made of the linear relation 

b = k(1 - Z/S) (33) 

which matches Ellison’s suggestion near the wall 
and yields an average between the upward 
velocity near the wall and the upward velocity 
near the edge of the boundary layer, which is 
probably close to zero, when Z/S = 0.5. 

Equation (25) was integrated numerically 
using a predicator-corrector method. The value 
of Z(x,+ J was first estimated and then the 
change of Z was calculated using the average of 
the slope AZ/Ax at xi and the estimated slope 
at x~+~. The value of Ax in the numerical 
integration was taken to be smaller than 612 
near the source and 6 at larger distances. 
Further reduction of Ax did not affect the 
results significantly. 

The results of the numerical calculations are 
shown in Figs. 34. 

4. ANALYSIS OF THE RESULTS 

The change of the characteristic height of the 
diffusing plume 1 with the distance x from the 
source was calculated by integrating (25), 

X m 

FIG. 3. Variation of 2 with x for different initial conditions 
(Cl = 3.7 m/s). 

assuming an initial value of I, = OW485 m 
(Z = 0.00365 m) at x = 0.1 m in agreement with 
(12). Figure 3 describes the calculated change of 
13. with x for different initial values. The calcula- 
tions confirm the expectation that when 
(x - x,)/l, becomes large, the value of 1 
should be independent of the initial value 1,. 

The values calculated of ;1 with b = k, 

b = Ot3k, and b = (1 - Z/6)k for U = 3.7 m/s 
are compared with (12) in Fig. 4. The curve 
describing the results with b = k follows the 
experimental power law only when 1/S (or Z/S) 
is small. It deviates, however, from the experi- 
mental line farther downstream, confirming the 
expectation that the mean upward velocity is 
smaller in that region. Integration of (25) with 
a smaller but constant value of b does not seem 
to be satisfactory either, as is suggested by the 
curve for b = 0.8k. On the other hand, the 
deviation of the computed values with b = 
(1 - 2/6)k from (12) is very small throughout 
the intermediate zone. 
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Integration of (25) 

FIG. 4. Development of the diffusion boundary layer in the 
intermediate zone. (Data and power Laws from [4].) 

I I- 
a.7 

0.5 ; NE 

" 

f 
E 

o-2 : 

0.1 

X. cm 

FIG. 5. Development of the diffusion boundary layer at 
different ambient v&cities (data from 141). 
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Figure 4 also shows the measured and the 
computed values of UC,,, with b = (1 - .Z/d)k. 
The computed curve, shown by a solid line, 
coincides with (13) in the intermediate zone. 
When A/S becomes closer to its asymptotic 
value, 0.64, the computed curve is closer to the 
measurements than the power law. 

Most of the data presented in [4] were 
measured at three different ambient velocities: 
U = 2.74, 3.67 and 5.15 mis. The corresponding 
values of 6 at the position of the source were 
estimated to be 0.178, 0.163 and 0.137 m. The 
experimental data did not show consistent 
differences between the values of 1 and UC,,, 
in those three runs. Figure 5 shows the calculated 
values of A and UC,,,, with b = k(1 - Z/S), for 
these three velocities. The corresponding values 
of 6(x) are also shown. One sees that the dif- 
ference between the computed values for the 
three cases is also very small. Such small 
differences could have not been distinguished 
experimentally. 

It should be pointed out that there is no 
general agreement as to the value of the con- 
stants in (26) and (27). Equation (22) was 
therefore integrated using two consistent sets 
of constants: the set k = 0.385. B = 4.0. B, = 

2.0, which was used by Landweber [9], and the 
set k = 0.4, B = 5.5, B, = 2.35. The same 
initial values of 1, and 6, at x0 = 0.1 m were 
used in both cases. The differences between 1 
and UC,, throughout the intermediate zone 
in the two cases were found to be smaller than 
two per cent, although the shear velocity V* 
calculated with the different sets of constants 
differed by approximately 5 per cent. 

The calculated values of njs are plotted in 
Fig. 6 vs. x/S. The parameter x/6 is defined by 

g(x) = i 6(x)- 1 dx. (34) 
0 

The calculations were carried up to A/6 = 0.64, 
although it is clear that the proposed model is 
valid only in the intermediate zone. One sees 
that the relative size of the diffusing plume is 
almost independent of the ambient velocity. 
The theoretical curves are in good agreement 
with the experimental data throughout the 
intermediate zone (only data from Series I of 
[4] are shown), and describe the slower growth 
of the plume in the transition region. On the 
other hand, the broken line in Fig. 6, which 
describes the values of A/6 computed with b = k, 
gives too large a diffusion rate beyond A/6 = 0.2. 

FIG. 6. Relative growth of the diffusion boundary layer. 
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5. EFFECT OF ROUGHNESS OR POLYMER 
ADDITIVES ON THF. DIFFUSION RATE 

Surface roughness leaves the structure of the 
turbulent flow away from the wall unch~g~ but 
decreases the thickness oF the viscous sub-layer 
([2], Chapter 7). Equation (26) in the case of 
rough surfaces becomes 

A LINE SOURCE 1481 

Since the structure of the logarithmic region 

r@‘* = ~og(~*z~v)/~ + B + AI3 (35) 

and the outer region is unchanged, (251, (33) 
and (19) can be used to predict the diffusion rate 
and the maximum con~ntrations in such flows 
when AB is known. The effect OF the roughness 
or polymer ~additives is apparent from the form 
of (25). As d&‘dx is approximately proportional 
to V*/U, diffusion increases in the case of 
rough surfaces and decreases in cases of drag 
reduction. 

where AS is a negative number depending on Figure 7 shows the growth of the diffusion 
the Reynolds number of the roughness. Drag boundary layer as calculated by (25) and (33) 
reducing polymers do not change the structure for a smooth boundary (AB = 0), a rough 
of the logarithmic and the outer regions either. boundary (AS = -4) and For flow of drag 
The log law remains valid except that a positive reducing polymers (A3 = 4). 
value of AB is observed, indicating an increase The same value of A = O-22 mm at x = 2 mm, 
of the thickness of the viscous sub-layer [ 111. U = 5 m/s and v = 10W6 m/s were used in the 

- Smooth boundary 

Smooth boundary with --- ._~ 
Polymers CAB-41 

-_- Rouph boundary l AB = - 4 f 

0.1 I , I I1111 1 I I11111 I I eat”, 

2 IO IO0 I 

X, mm 

FIG. 7. Effect of surface roughness and drag reducing 
additives. 

JO 

In both cases (27) and (28) remain unchanged. three cases. The initial value of 6 at that point 
The ratio of U/V* increases, however, in the was also assumed to be the same; 5 = 414 mm, 
case of polymers, and decreases in the case of giving U/V* = 20.1, 23.75 and 27.3 for AB = 
rough surfaces. -4,Oand4. 
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One sees from Fig. 7 that at large distances 
from the source the values of 2 at a given 

Numerical integration of (25) appears to be a 
simple method for predicting the diffusion 

distance x. scale proportionally to v*/u. rate in developing boundary layers. 

7. SUMMARY AND CONCLUSIONS 

It is suggested, on the basis of the observed 
similarity of the concentration profiles down- 
stream of a continuous line source at ground 
level, that the mean vertical height of particles 
Z at a distance x from the source is approxi- 
mately equal to the mean vertical height of an 
ensemble of single particle releases having the 
same mean distance from the source. Accord- 
ingly. the rate of growth of the diffusing boundary 
layer has been calculated by integrating the 
equation, 
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DlFFUSION ti PARTIR D’UNE SOURCE LlNl?AIRE DANS UNE COUCHE LlMlTE 
TURBULENTE 

R&sum&-La diffusion B partir d’une source IinCaire est calcul& en modifiant une mCthode d&j& proposCe 
et bask SW des considCrations de similitude lagrangienne pour dicrire la position moyenne d’un ensemble 
de particules. Un bon accord est trouve avec les mesures de la taille CaractCristique et de la concentration 
maximale dans toute la r&ion intermkdiaire de diffusion dans une couche limite turbulente en 

d&eloppement. 

DlFFUSlON VON EINER LINIENQUELLE IN ElNE TURBULENTE GRENZSCHlCHT 

Zusammenfassung-Es wird die Diffusion van einer kontinulerhchen Linienquelle berechnet, indcm eine 
urspr~nglich auf der Basis der Lagrangeschen xhnlichkeit beruhende Methode modifiziert wird. SG dass 
sich die mittlere Lage eines Kollektivs von freigesettten Teiichen bestimmen Ilsst. 
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Es zeigte sich, dass gute ijbereinstimmung mit Messungen der charakteristischen G&se und der maxi- 
malen Konzentration im ganzen tibergangsbereich der Diffusion in einer sich entwickelnden turbulenten 

Grenzschicht herrscht. 

flI4@@Y3kI?I? OT JIIJHE~HOI’O kiCTOYHElHA B TYPBYJIEHTHOM 
rIOrPAHWIHOM CJIOE 

Aaao~aq~isl-&i~@ya~~ OT HenpepbrBHOrO JIHH&HOI-0 MCTOYHLlKa pElCCWiTbIBEleTCR C 

IIOMOlI('IdCI MOJ&W~EipOBaHHOI'O MeTO~3,OCHOB3HHOrOHa coo6pa~eBanxno~o6I1n jIElrpaHFK3 

II nepBoHaYanbH0 npeRnoxtemor0 flnrl 0nmaHkm cpefiHer0 nonoxemn aHcaM6nefi AmKpe- 
THbIX YEICTHU. YCT,HOBJIt?HO XOpOIIIW COOTBeTCTBClt? C M3MepeHMflMM XapalSTepHOI-0 p33Mepa 

II MaHCkiMaJ7bHOti KOHqeHTpaqkIH B IIpOMeHiyTOYHOi? CTElAMIl AE1$49'3IW B pa3BMBaIO~eMCfi 

Typ6yJIeHTHOM FlOrpaHIWHOM CJIOt?. 


